skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rader, Jamin_K"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The ocean removes man-made (anthropogenic) carbon from the atmosphere and thereby mitigates climate change. Observations from global hydrographic surveys reveal the spatial and temporal evolution of the ocean inventory of anthropogenic carbon and suggest substantial decadal variability in historical storage rates. Here, we use a 100-member ensemble of an Earth system model to investigate the influence of external forcing and internal climate variability on historical changes in ocean anthropogenic carbon storage over 1994 to 2014. Our findings reveal that the externally forced, decadal changes in storage are largest in the Atlantic (2–4 mmol m−3decade−1) and positive nearly everywhere. Internal climate variability modulates regional ocean anthropogenic carbon storage trends by up to 10 mmol m−3decade−1. The influence of internal climate variability on decadal storage changes is most prominent at depths of ∼300 m and at the edges of the subtropical gyres. Internal variability in anthropogenic carbon in the extratropics has high spectral power on decadal to multi-decadal timescales, indicating that the approximately decadal repetitions of hydrographic surveys may produce storage change estimates that are heavily influenced by internal climate variability. 
    more » « less
  2. Abstract Seasonal‐to‐decadal climate prediction is crucial for decision‐making in a number of industries, but forecasts on these timescales have limited skill. Here, we develop a data‐driven method for selecting optimal analogs for seasonal‐to‐decadal analog forecasting. Using an interpretable neural network, we learn a spatially‐weighted mask that quantifies how important each grid point is for determining whether two climate states will evolve similarly. We show that analogs selected using this weighted mask provide more skillful forecasts than analogs that are selected using traditional spatially‐uniform methods. This method is tested on two prediction problems using the Max Planck Institute for Meteorology Grand Ensemble: multi‐year prediction of North Atlantic sea surface temperatures, and seasonal prediction of El Niño Southern Oscillation. This work demonstrates a methodical approach to selecting analogs that may be useful for improving seasonal‐to‐decadal forecasts and understanding their sources of skill. 
    more » « less